4000-110-821
首页 9 资讯 9 行业知识 9 什么是蓝牙定位?蓝牙定位的应用与技术原理介绍

什么是蓝牙定位?蓝牙定位的应用与技术原理介绍

| 1 月 31, 2023 | 行业知识 | 0 条评论

蓝牙技术已经普遍应用于智能手机、健康手环和电脑等电子设备,得到广泛的关注。据蓝牙组织统计,目前有不少于80亿蓝牙设备,在未来,物联网高速发展中,蓝牙设备的数量会越来越庞大。由于卫星信号受到遮挡后衰减,室内定位一直是卫星定位的死角。近年来,基于现有的无线技术,人们进行了一些室内定位的研究和开发。其中,由于技术成本低,基于低功耗蓝牙的定位方案受到人们的追捧,已经在市场上得到实际应用。但是,现有的蓝牙定位方案,存在明显的缺陷,比如,定位精度为1到10米,难以满足高精度的定位需求。2019年,蓝牙组织根据人们在室内定位方面的需求,在蓝牙5.1中新增了蓝牙寻向功能,结合现有的蓝牙定位方案,定位的精确度可达到亚米级。

本文首先介绍了现阶段蓝牙在定位方面的应用和技术原理,其次,阐述了蓝牙寻向技术原理和应用上的优势,最后,针对蓝牙5.1定位终端的生产和研发测试,提出一套基于射频的测试方案。

1 蓝牙定位的应用介绍

无线电波在传输过程中,随着传输距离的增加,信号会逐渐衰减。根据此特性,当前的蓝牙定位方案基于相同的实现方式:根据测试发信方的信号强度,蓝牙受信设备估算与发信方的距离。根据定位的应用场景,主要分为两个应用方向,蓝牙感知技术和蓝牙定位技术

  • 蓝牙感知技术

蓝牙感知技术的实现相对简单:根据发信方的信号强度变化来判断发信方的位置。如图1所示,受信方接收到发信方的信号,对信号进行分析后,估算距离远近,在移动中,随着距离发生变化,信号强度发生变化,信号增强,则更接近发信方,反之,则远离发信方。

图1:蓝牙接近

基于蓝牙感知技术,目前的应用是物品查找和兴趣热点两种服务。物品查找主要是针对个人的一些应用,比如寻找个人用品,钱包或者钥匙。在钱包里放置蓝牙设备,用户根据手机中的一个应用软件,搜索该蓝牙设备,就能监控或寻找钱包。

兴趣热点是指在一些大型公共场所里,在特定的兴趣地点安装蓝牙设备,供访问者搜索。比如,在博物馆里,给展品绑定蓝牙设备,参观者用手机上的应用软件,根据展品上蓝牙设备发送的信号,更容易的找到自己感兴趣的展位。根据商场里的商店发送的信号,顾客更容易找到自己感兴趣的品牌。这些应用场景,都可以通过兴趣热点,使用户得到更好的服务体验。

蓝牙感知技术,从自身移动时信号强度的变化判断与发信方的距离远近变化,在实际应用中,需要“移动”较长的时间,才能找到大约的方向,用户体验较差,所以,只能应用于一些简单的场景。

  • 蓝牙定位技术

蓝牙感知技术是端对端的简单应用,而蓝牙定位技术则是相同原理下的一种复杂应用,主要分为实时追踪和室内定位两个应用方向。

1.2.1实时追踪

实时追踪,主要应用于资产追踪或者人物追踪。例如,物流仓库中的货物、叉车和工人,医院的医护设备和病人,可以通过实时定位,进行更安全更优化的管理。如图2,在室内特定位置的安装蓝牙接收机,实时接收从被追踪者发出的信号,蓝牙接收机将各自接收到的信号强度上报给服务中心,通过计算得到被追踪者的位置。根据平面三点定位的要求,平面上需要安装至少三个接收机,所有接收机需要构成网络,由服务中心统一管理。

根据对实时性的要求,可以设置被追踪者信号的发射周期,发射周期越大,电池的能耗越小,被追踪者待机时间也越长,该周期的长短直接决定了追踪位置的刷新率。

图2:实时定位拓扑图

1.2.2室内定位

室内定位,主要是通过提供辅助信号,帮助终端计算自己的位置信息,主要应用于一些大型室内公共场所,例如,大型商场、超市或者办公楼。在商场里安装固定位置的蓝牙发射装置,周期性的发送蓝牙信号,如图3,访客通过手机应用软件,接收来自固定发射器的信号,通过信号强度计算自己与固定发射器的距离。在平面上,通过至少三个固定发射器的信号强度,就能得出平面上的位置信息。

图3 室内定位拓扑图

蓝牙定位技术,首先,需要在室内布置一定数量的固定蓝牙设备,而且,这些蓝牙设备的位置坐标时已知的。其次,通过测量信号强度估算距离,由于估算的精度有限,目前的定位精度为1到10米,该定位精度远达不到市场的需求。针对该问题,蓝牙组织在蓝牙5.1中引入了寻向技术,将定位精度提高到厘米级。

2 蓝牙5.1:寻向功能

在蓝牙5.1新增的几个功能中,蓝牙寻向功能是最重要的特性。根据应用场景的不同,分成两种寻向方式,到达角度(AoA)和离开角度(AoD)。

2.1到达角度(AoA)

图4为AoA的示意图,发信方为单天线,受信方为多天线。发信方的连续波信号到达受信方后,由于受信方每个天线与发信方的距离差异,到达的时间形成差异,造成了电磁波的相位差异。每个天线上可以得到不同的相位信息,利用天线间的相位差,AoA测试法就可以计算得到与被定位对象的角度。从应用场景上,AoA类似于当前的蓝牙实时追踪技术。

图4 AoA定位模型

如图5,d为接收天线阵列中两个天线的距离,为两个天线的相位差,为波长。

图5 到达角度计算

根据公式1,就能计算得到到达角度。

2.2离开角度(AoD)

图6为AoD的示意图,发信方的多个天线组成天线阵列,分时发送同一个连续波信号。由于每个发射天线与接收天线的距离不同,信号到达受信方后,形成了相位差异。利用相位差,AoD测试法就可以计算得到自己与对方的角度。AoD可以替代现在的室内定位模型,用于室内定位。

图6 AoD定位模型

如图7,d为发射天线阵列中两个天线的距离,为两个天线的相位差,为波长,根据公式1,计算得到离开角度。

图7 离开角度计算

2.3蓝牙寻向的技术优势

相对于现有的蓝牙定位技术方案,寻向技术的引入,对定位精度的改进有了新的突破口。

首先,蓝牙感知是根据接收信号强度的变化,分析距离远近变化,受无线环境影响,存在较大的不确定性。寻向技术则通过发信方信号,无需信号强弱分析,直接计算发信方的方向。所以,蓝牙寻向在物品查找和兴趣热点两种服务的应用中,优势更加明显。

其次,现有的实时追踪和室内定位的应用中,根据信号强度测距,会带来很大的误差。如果引入寻向技术,结合方向信息和信号测距结果,能得到更准确的位置信息。

因此,蓝牙寻向的引入,让蓝牙定位有了更大的发展空间。

2.4蓝牙寻向的实现难点

如图8,蓝牙5.1在信号的尾部引入了CTE部分(constant Tone Extension),CTE由内容为全1的符号组成,CTE所含符号的数量由上层协议决定。接收机是通过对CTE数据的采样分析,得到波长,相位。在计算公式1中,参数波长、相位差和天线距离直接影响了寻向的误差。

图8 蓝牙5.1的信号格式

首先,波长由发射信号频率决定。因为CTE由全1的符号组成,CTE部分的频率为调频后的频率,真实的波长由载波频率和调制频率的准确性来决定。

其次,是接收方通过信号采集,分析得到的结果。如图9所示,多天线发射或者接收时,需要在各个天线上依次发送信号,每次切换天线时,需要预留一个切换时隙,作为保护间隔。所以,天线切换和相位的连续性也会对寻向计算产生影响。

图9 CTE信号收发时隙

最后,由于电路板的布置和天线形态的不同,天线距离d存在不确定性,本文在载波频率为2402MHz,天线距离d为80mm,测试角度不变的情况下,在天线距离d的误差从0递增到40mm时,分析对角度计算结果的影响。如图10,图中曲线分别为理想角度和实际计算角度,理想角度保持恒定,当天线距离的误差增大时,实际计算的角度有递增趋势。

图10 天线距离误差对寻向结果的影响

减少上述因素带来的影响,就能进行更精确的寻向。而使用测试仪表对产品的性能测试,构建相应的测试模型,能从测试数据上分析产品的寻向精度,同时,也能对产品的寻向结果进行校准。

3 蓝牙5.1的测试

根据蓝牙寻向产品的分类,蓝牙组织在测试规范中分别对到达角度(AoA)和离开角度(AoD)的产品,制定了发射机和接收机的测试项目。

发射机的测试项目,包含发射功率,发射机的载波频率误差以及频谱漂移,另外,AoD产品具有多天线,工作时多天线分时发射信号,所以,需要测试AoD产品天线切换时的射频性能,保持功率和相位的稳定性。

接收机的测试项目,针对被测件寻向的要求,需要对接收到的信号功率和相位进行计算。AoA产品具有多天线,工作时多天线分时接收,每个天线准确的计算相位信息,是寻向精度的保证。

AoD接收机和AoA发射机,都是单天线产品结构,采取了相同的测试环境。以罗德与施瓦茨公司的综测仪CMW270为例,如图11,用射频线缆连接仪表与被测件,在测试AoD接收机时,仪表发送信号,AoD产品接收信号。在测试AoA发射机时,AoA产品发射信号,仪表分析信号的射频指标。

图11 AoD接收机和AoA发射机的测试

AoD发射机和AoA接收机,二者都是多天线的产品结构,所以,需要搭建特别的测试环境,如图12,在测试仪表CMW270和被测件之间,需要一个额外的合路器或功分器,CMW500模拟单天线终端。

图12 AoD发射机和AoA接收机的测试

因为测试仪器发送信号的相位和功率是可编辑的,所以,在产品整机的研发和生产阶段,利用测试仪表发出的信号,测试整机定位的准确性。如图13,测试仪在发射信号的相应时隙,改变每个接收天线的对应相位P0、P1、P2和P3,模拟相应的角度。图中四个天线接收的信号,对应时隙的实测相位为△P0、△P1、△P2和△P3,根据实测相位,被测设备计算得到定位角度。模拟的偏差,即为寻向偏差。

图13 测试仪表模拟相位变化

如果动态的改变信号的相位和功率,测试仪表可以模拟移动中的定位场景。功率的变化,对应于发信方与受信方之间距离远近的变化;相位的变化,对应于双方方向的变化。根据应用场景,按照一定的“速度”来改变发射信号的功率和相位,可以模拟相应的移动速度和轨迹。结合应用程序和地图信息,可以测试终端在移动场景下的定位能力。

综上所述,采用测试仪表,可以对蓝牙寻向产品的射频指标进行定量分析,也可以模拟现实的定位场景,进行定位服务的应用测试,在测试中发现和纠正寻向偏差。

4 总结

多年来,低功耗蓝牙为消费、零售、医疗保健以及制造领域的各类应用创造了功能强大、低成本的解决方案,寻向技术将使蓝牙技术更好地满足定位服务行业中不断变化的需求。借助测试仪表,在研发和生产阶段对终端产品的测试,能帮助提升定位服务的精度,是产品质量的重要保障。

本文由“中芯微”小编整理提供。感兴趣的朋友欢迎持续关注我!

中芯微是国内首家利用物联网技术在公检法司领域进行人员定位管理探索的企业;拥有RFIDAOAUWB、Beacon、GPS/北斗室外定位6条定位产品线,提供亚米级、米级、房间级定位精度。应用领域涵盖司法监管、安全生产、医养看护、定位导航、效能分析及应急救援等6大领域,项目已落地省份29+,成功案例600+。现提供AOA/UWB Dome套件(基站+标签+平台+指导)可体验测试,有需要的朋友欢迎拨打 4000-110-821 电话咨询我们!

商务咨询:4000-110-821

解决方案